BIOPR FILES

Greenhouse Gas Production (CO,)

Introduction

Carbon dioxide (CO_2) is a colourless, non-combustible, atmospheric gas. It is produced by people, animals and plants in the process of breathing. The problem arises in its overproduction, especially when burning fossil fuels such as coal, oil and natural gas. A significant share of fossil fuel combustion is represented by means of transport, such as aircraft, cars, trucks, boats or buses. Over the past decades, we have produced such a large amount of CO_2 that its volume has created an invisible layer that retains heat in the atmosphere, causing global warming. This process is also called the greenhouse effect. As a result, climate change is becoming an increasing problem, so it is the time to act.

Learn about the problem

Use the internet, (scientific / popular) literature or in collaboration with experts to find available information on CO₂ production using different modes of transport. Also focus on the following questions:

- What causes increased CO₂ in the atmosphere?
- What are the main sources of CO, production in your country / region / city?
- What percent of your country's emissions are generated by transport?
- What is the traffic density in your city / municipality?
- What are the alternative transport fuels and are they being used locally?
- Which European cities support the use of bicycles? What about your city?
- How many kilometres of bike paths are in your city / town?

Recommended resources

Source 1: CO_2 emissions from transport

Source 4: Range of life-cycle CO₂ emissions for different vehicle and fuel types

Source 2: Greenhouse gas emissions from transport

Source 5: Transport and public health

Source 6: Green choices: policymakers, investors and consumers

Source 3:

A European strategy for

low-emission mobility

Verify the occurrence of a problem in your area with your own research

Goal

Students can calculate the amount of CO_2 emissions they produce from travelling to and from school. Students are aware of the impact of increased CO_2 in the atmosphere and are considering ways to reduce production to help achieve higher air quality.

BIOPR FILES

Tools & Materials

- online maps (e.g. Google maps) or GPS device to measure distance
- recording card
- map to mark individual student routes (additional)
- a board / flipchart / tablet or similar
- calculator
- camera / mobile to record activity

Implementation

At the beginning, set a monitoring period (e.g. week / month). The chosen period should represent the students' travel habits to the maximum extent. Alternatively, implement the monitoring repeatedly in different seasons. You can compare the results of individual monitored periods with each other and propose such solutions that are suitable for a particular season of the year, or weather.

Measurement

Each student records the route to and from the school on a daily basis and the method of transport used. If you are transferring to another method of transport during your journey to / from school, write down the place where this is happening.

Use the map or GPS device to find out the length of the route for each of the methods of transport you used on your day's route to / from school.

Based on the length of the route and the method of transport used, calculate the amount of emissions you produced on that day.

At the end of the monitored period calculate the average daily production and compare it to the average daily production of the entire group. You can also convert the CO_2 produced to the number of trees needed to process your CO₂ volume at different times (1 day, 1 month, 1 year).

Analysis of results and proposal of solution

How many kilograms of CO_2 did you produce as individuals and as a class? How do you perceive this quantity? Together, discuss how you could reduce CO_2 emissions while travelling to / from school. Write down your suggestions. Think about whether your solutions are feasible. Is there a solution that could be applied by each group member?

Implementation of the solution and evaluation

Try to implement the selected design and then repeat the monitoring. Have you managed to improve your results in repeated monitoring? How did the environment react to your solutions? Are there other solutions that you could apply? Do you have advice on how to convince others to reduce their CO₂ production?

How would you evaluate your feelings after implementing the selected solution?

Publicity

Record and share photos on social networks with **#mybioprofile** during the activity. Help others to join us.

BIOPR@FILES

The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

The project BIOPROFILES - Implementation of practical environmental education in schools is co-funded by the European Union, ERASMUS+ programme. Contract number: 2018-1-SK01-KA201-046312.

Example

S LL
\bigcirc
$\widehat{}$

					Recordir	ng card						
Name	John D	Doe			Class						9.B	
School	Victoria's Eleme	entary Scho	loc		City						-ondon	
Date		Ö	ay 1	D	ay 2	Da	iy 3	Da	iy 4	Dε	1y 5	Total production of
Mean of Trai	nsport	to school	from school	CO ₂ [g]								
	Length of route in km (L)	2		2				2	2	2		
loot or picycle	CO_2 production in g = L * 0 g/km	0		0				0	0	0		0
tram or	Length of route in km (L)	3						3	3	3		
trolleybus	CO_2 production in g = L * 42 g/km	126						126	126	126		504
	Length of route in km (L)											
electric car	CO_2 production in g = L * 43 g/km											
	Length of route in km (L)											
spannin	CO_2 production in g = L * 55 g/km											
	Length of route in km (L)											
diesel train	CO_2 production in g = L * 60 g/km											
electric train	Length of route in km (L)	11		11				11	11	11		
or metro	CO_2 production in g = L * 65 g/km	715		715				715	715	715		3575
<u>.</u>	Length of route in km (L)			3								
sna	CO_2 production in g = L * 69 g/km			207								207
	Length of route in km (L)											
mopea	CO_2 production in g = L * 73 g/km											
	Length of route in km (L)											
IIJADIIG CAI	CO_2 production in g = L * 84 g/km											
motorolo	Length of route in km (L)											
	CO_2 production in g = L * 94 g/km											
	Length of route in km (L)											
SILIAIL CAL	CO_2 production in g = L * 110 g/km											
	Length of route in km (L)		18		18	18						
meaium car	CO_2 production in g = L * 133 g/km		2394		2394	2394						7182
	Length of route in km (L)						18				18	
DIB Cal	CO_2 production in g = L * 183 g/km						3294				3294	6588
Source	Total production of CO ₂ [g]	841	2394	922	2394	2394	3294	841	841	841	3294	18 056

Recording C	ard - Greenhouse Gas Produ	ction (C	D ₂)									R F L E S
					Recordi	ng card						
Name					Class							
School					City							
Date		Ö	ay 1	Ö	ay 2	Da	ly 3	Da	ay 4	Ő	ay 5	Total production of
Mean of Tra	nsport	to school	from school	to school	from school	to school	from school	to school	from school	to school	from school	CO ₂ [g]
	Length of route in km (L)											
1001 OF DICYCIE	CO_2 production in g = L * 0 g/km											
tram or	Length of route in km (L)											
trolleybus	CO_2 production in g = L * 42 g/km											
0 0 0 0 0 0 0 0 0 0	Length of route in km (L)											
electric car	CO_2 production in g = L * 43 g/km											
	Length of route in km (L)											
SUGINITI	CO_2 production in g = L * 55 g/km											
-	Length of route in km (L)											
diesel train	CO_2 production in g = L * 60 g/km											
electric train	Length of route in km (L)											
or metro	CO_2 production in g = L * 65 g/km											
	Length of route in km (L)											
sna	CO_2 production in g = L * 69 g/km											
	Length of route in km (L)											
mopea	CO_2 production in g = L * 73 g/km											
	Length of route in km (L)											
	CO_2 production in g = L * 84 g/km											
	Length of route in km (L)											
motorcycle	CO_2 production in g = L * 94 g/km											
	Length of route in km (L)											
SIIIall Cal	CO_2 production in g = L * 110 g/km											
	Length of route in km (L)											
	CO_2 production in g = L * 133 g/km											
	Length of route in km (L)											
DIB Cal	CO_2 production in g = L * 183 g/km											
Source	Total production of CO ₂ [g]											